
Tool support for Architectural Decisions

Anton Jansen, Jan van der Ven, Paris Avgeriou, Dieter K. Hammer
University of Groningen

Department of Mathematics and Computing Science
PO Box 800, 9700AV Groningen, The Netherlands

[anton|salvador|paris|dieter]@cs.rug.nl

Abstract

In contrast to software architecture models, architec-
tural decisions are often not explicitly documented, and
therefore eventually lost. This contributes to major prob-
lems such as high-cost system evolution, stakeholders mis-
communication, and limited reusability of core system as-
sets. An approach is outlined that systematically and semi-
automatically documents architectural decisions and al-
lows them to be effectively shared by the stakeholders. A
first attempt is presented that partially implements the ap-
proach by binding architectural decisions, models and the
system implementation. The approach is demonstrated with
an example demonstrating its usefulness with regards to
some industrial use cases.

1. Introduction

Current research trends in software architecture focus on
the treatment of architectural decisions [16, 26, 18] as first-
class entities and their explicit representation in the archi-
tectural documentation. From this point of view, a software
system’s architecture is no longer perceived as interacting
components and connectors, but rather as a set of archi-
tectural decisions [13]. This paradigm shift has been ini-
tiated in order to alleviate a major shortcoming in the field
of software architecture:Architectural Knowledge Vapor-
ization[6, 30].

Architectural decisions are one of the most significant
forms of architectural knowledge [30]. Consequently, archi-
tectural knowledge vaporizes because most of the architec-
tural decisions are not documented in the architectural doc-
ument and cannot be explicitly derived from the architec-
tural models. They merely exist in the form of tacit knowl-
edge in the heads of architects or other stakeholders, and
inevitably dissipate. Note, that this knowledge vaporization
is accelerated if no architectural documentation is created
or maintained in the first place.

Architectural knowledge vaporization due to the loss of
architectural decisions is most critical, as it leads to a num-
ber of problems that the software industry is struggling
with:

• Expensive system evolution. As the systems need to
change in order to deal with new requirements, new
architectural decisions need to be taken. However, the
documentation of existing architectural decisions that
reflect the original intent of the architects is lacking.
This in turn causes the adding, removing, or changing
of decisions to be highly problematic. Architects may
violate, override, or neglect to remove existing deci-
sions, as they are unaware of them. This issue, which
is also known asarchitectural erosion[22], results in
high evolution costs.

• Lack of stakeholder communication. The stakehold-
ers come from different backgrounds and have dif-
ferent concerns that the architecture document must
address. If the architectural decisions are not docu-
mented and shared among the stakeholders, it is dif-
ficult to perform tradeoffs, resolve conflicts, and set
common goals, as the reasons behind the architecture
are not clear to everyone.

• Limited reusability . Architectural reuse cannot be ef-
fectively performed when the architectural decisions
are implicitly hidden in the architecture. To reuse ar-
chitectural artifacts, we need to know the alternatives,
and the rationale behind each of them, as to avoid mak-
ing the same mistakes. Otherwise the architects need
to ‘re-invent the wheel’.

The complex nature and role of architectural decisions
requires a systematic and partially automated approach that
can explicitly document and subsequently incorporate them
in the architecting process. The development of such an ap-
proach is explained in a bottom up fashion in this paper. The
explanation starts with the notion of architectural decisions

and continues from the point of view of sharing and using
these decisions by relevant stakeholders.

We have worked with industrial partners to understand
the exact problems they face with respect to loss of archi-
tectural decisions. We demonstrate how the system stake-
holders exactly can use architectural decisions with the help
of a use-case model. We then introduce a first attempt on
implementing the proposed approach, a research prototype
entitled Archium that aims primarily at capturing architec-
tural decisions and weaving them into the development pro-
cess. The Archium tool is demonstrated through an exam-
ple. The contribution of this paper is therefore a first attempt
of putting the theory of architectural knowledge into prac-
tice.

The rest of the paper is structured as follows: in Section
2 the notion of architectural decisions is presented. Sec-
tion 3 gives an overview of the proposed approach. Sec-
tion 4 presents the implementation of this approach in the
Archium tool, followed by the tool demonstration through
an example in Section 5. Related work is discussed in Sec-
tion 6. The paper concludes with conclusions and future
work in Section 7.

2 Architectural Decisions

To solve the problem of knowledge vaporization and at-
tack the associated problems of expensive system evolution,
lack of stakeholder communication, and limited reused we
need to effectively upgrade the status of architectural deci-
sions to first-class entities. However, first we need to un-
derstand their nature and their role in software architecture.
Based on our earlier work [6, 13, 30], we have come to the
following conclusions on architectural decisions so far:

• They are cross-cutting to a great part or the whole of
the design. Each decision usually involves a number of
architectural components and connectors and influence
a number of quality attributes.

• They are interlaced in the context of a system’s archi-
tecture and they may have complex dependencies with
each other. These dependencies are usually not easily
understood which further hinders modelling them and
analyzing them (e.g. for consistency).

• They are taken to realize requirements (or stakehold-
ers’ concerns), and conversely requirements must re-
sult in architectural decisions. This two-way trace-
ability between requirements and decisions is essential
for understanding why the architectural decisions were
taken.

• They must result in architectural models, and con-
versely architectural models must be rationalized by

architectural decisions. This two-way traceability be-
tween decisions and models is essential for under-
standing how the architectural decisions affect the sys-
tem.

• They are derived in a rich context: they result from
choosing one out of several alternatives, they usually
represent a trade-off, they are accompanied by a ratio-
nale, and they have positive and negative consequences
on the overall quality of the system architecture.

The exact properties and relationships of the architec-
tural decisions [6, 17] are still the topic of ongoing research.
Currently, some properties [26, 21, 13] and relationships
[18] have been identified. In this paper, the definition from
[30] is used for architectural decisions:

A description of the choice and considered al-
ternatives that (partially) realize one or more re-
quirements. Alternatives consist of a set of archi-
tectural additions, subtractions and modifications
to the software architecture, the rationale, and the
design rules, design constraints and additional re-
quirements.

A description of an architectural decision can therefore
be divided in two parts: a description of the choice and the
associated alternatives. The description of the choice con-
sists of elements like: problem, motivation, cause, context,
choice (i.e. the decision), and the resulting architectural
modification. The description of an alternative include: de-
sign rules and constraints, consequences, pros and cons of
the alternative [30]. For a more in-depth description how
architectural decisions can be described see [26, 30].

3 A knowledge grid for architectural deci-
sions

3.1 Introduction

In order to support and semi-automate the introduction
and management of architectural decisions in the architect-
ing process an appropriate tool is required. In specific, this
tool should be a Knowledge Grid [33]: “an intelligent and
sustainable interconnection environment that enables peo-
ple and machines to effectively capture, publish, share and
manage knowledge resources”. A knowledge grid for ar-
chitectural decisions should be a system that supports the
effective collaboration of teams, problem solving, and deci-
sion making. It should also use ontologies to represent the
complex nature of architectural decisions, as well as their
dense inter-dependencies.

To resolve the problem of knowledge vaporization, this
system must support architects to add, remove, analyze, and

view the architectural decisions made in the architecting
process. It must effectively visualize architectural decisions
from a number of different viewpoints, depending on what
the stakeholders wish to look at.

Furthermore, it must enable easy sharing of decisions be-
tween stakeholders. It must be integrated with the tools used
by architects, as it must connect the architectural decisions
to documents written in the various tools or design environ-
ments. Through this, it enables traceability of these deci-
sions to the artifacts of the architecting process. The system
must also help the architect trace the architectural decisions
to the requirements on one side and the implementation on
the other side.

The Griffin research project [11] is currently working on
tools, techniques and methods that will perform the vari-
ous tasks needed for building this knowledge grid. The
project has achieved so far two main contributions: a use
case model [29] that describes the required usages of the
envisioned knowledge grid, and a domain model [10] that
describes the basic concepts and their relationships for stor-
ing, sharing, and using architectural decisions. In the next
subsection, the use case model is briefly sketched while in
Section 4 we present an implementation of this knowledge
grid: the research prototype Archium.

3.2 Use Cases of Industrial Relevance

In the context of the Griffin project, we have done a thor-
ough investigation on the demands for sharing architectural
decisions in the architecting process. First, the demands of
the project industrial partners were investigated. Interviews
were held with several employees from these partners; ar-
chitects as well as architecture reviewers were interviewed.
The industrial partners are from different domains, namely
embedded systems, information systems, and radio astron-
omy. The reports of the interviews were sent back to the
interviewee, and suggested corrections were processed.

The results of the first investigation are presented as a
set of 27 use cases [29]. Some use cases cannot directly
be linked to these interviews and/or current daily practice.
They are either use cases that emerged from related work
[18], or from the Griffin research team. The use cases have
been described according to the UML 2.0 [27] specification.

The use cases present a wide area of issues concerning
the problems discussed in the introduction. To narrow this
list, we ranked the use cases on the basis of the number of
occurrences in the interview reports. This ranking reflects
the importance of the use cases for the industrial partners.
A list of the nine most important use case follows, while a
more elaborated description is given in Section 4:

(UC1) Retrieve architectural decision

(UC2) Add an architectural decision

(UC3) Check for consistency

(UC4) Validate the set of architectural decisions against the
requirements

(UC5) Check implementation against architectural deci-
sions

(UC6) Get consequences of an architectural decision

(UC7) Check for completeness

(UC8) Detect patterns of architectural decision dependen-
cies

(UC9) Check for superfluous architectural decisions

According to this ranking, the basic add and retrieve
functionality for architectural decisions is the most wanted.
Note, that modifying an design decision is seen as adding
another design decisions, which changes the effect of an
earlier decision. The more sophisticated evaluation and
checking mechanisms are considered somewhat less impor-
tant, but are desired.

The problems identified in the introduction section are
clearly reflected in the use cases. Theexpensive system
evolution is tackled by checking the consistency (UC3) and
completeness (UC7), but also the requirement validation
(UC4) and implementation check (UC5) are very useful in
this context. Adding (UC2) and retrieving (UC1) of archi-
tectural decisions is essential to alleviate thelack of stake-
holder communication. Getting the consequences of an
architectural decision (UC6) helps in increasing the insight
in the effects of a change when the system is evolving. This
use case is also the main functionality used to improve the
limited reusability of architectures. The detection of pat-
terns (UC8) and check for superfluous decisions (UC9) give
more insight into the specific architecture, and the potential
problems with this architecture.

The following section discusses how the Archium tool,
an implementation of the knowledge grid for architectural
decisions, fulfils the described use cases.

4 The Archium tool

4.1 Introduction

The Archium tool [13, 2] is a prototype implementation
of the envisioned knowledge grid presented in the previous
section, and realizes a part of the Griffin project use cases
[29]. The Archium prototype is aspecialized versionof
the envisioned knowledge grid, as it provides a more prag-
matic approach to the usage of architectural decisions: it
links the architecting process with the system implementa-
tion through transformations.

The Archium tool integrates an architectural description
language (ADL) [20] with Java. This language allows an
architect to describe the elements from a component & con-
nector view [9], and to express architectural decisions, de-
sign fragments [13], and rationale. Archium combines the
above by modeling the relationship between architectural
decisions and the architectural entities (e.g. components and
connectors) in detail. In our earlier work [13], we described
how these two aspects are integrated with each other. In this
paper, the focus is onhow these concepts are used. Instead
of focussing onwhat these concepts are, as we did in our
earlier work [13, 30].

The remainder of this section presents how Archium re-
alizes the Griffin use cases. For each use case, the use of
Archium is explained, which if followed by a description of
the traceability that is used to achieve many of these use
cases. The section concludes, with an overview on how
Archium tool is realized.

4.2 Use case realization

Retrieve architectural decision

Use-case:Given the architectural model (or a part of it),
trace back to the architectural decision it is based on. Pro-
vide the architectural drivers and the rationale of the deci-
sions.

Archium: The visualization of the Archium tool, allows
the architect to select a component or connector. This will
cause the relevant architectural decisions to appear on the
screen, while the architectural decision responsible for the
existence of the element is highlighted with a separate color.
Hovering above an architectural decision reveals in a tool-
tip the relevant rationale of this decision. An example of
this is presented in figure 1.

Add an architectural decision

Use-case:Add an architectural decision. Prior to adding a
decision, certain prerequisites should be satisfied, i.e. ques-
tions that need to be answered in order to be able to take
the decision. Also, the evaluated alternatives and rationale
about the decision can be recorded.

Archium: In Archium, architectural decisions are con-
sidered as first class entities. Adding an architectural deci-
sion is therefore the definition of the corresponding element
in the Archium language, which allows for the description
of the alternatives and rationale of a decision. In this sense,
the Archium language acts as a formalized template for ar-
chitectural decisions.

Check for consistency

Use-case:Check if the current set of architectural decisions
is internally consistent. Check if the chosen alternatives
have inconsistent consequences on the architectural model.

Archium: The Archium compiler and run-time environ-
ment do numerous checks to ensure consistency. For exam-
ple, the compiler ensures communication integrity [1] by
checking whether a component refers to architectural ele-
ments that are not defined in the components required in-
terface. Another example is the check Archium makes on
whether the functional dependencies of an architectural de-
cision are satisfied before an architectural decision is ap-
plied.

Validate the set of architectural decisions against the re-
quirements

Use-case:Trace the requirements to the decisions. Check
if the requirements are all sufficiently covered by the deci-
sions that are taken.

Archium: Archium supports the tracing of requirements
to architectural decisions and can check whether all require-
ments are addressed in one or more architectural decisions.
The Archium compiler warns about requirements that are
not addressed.

Check implementation against architectural decisions

Use-case:At a certain moment in time, the architect would
like to see to what extent the implementation effort of the
development team is in line with the architectural decisions.
Consequently, the architect wants to know where in the de-
velopment process people ignore or disregard the made de-
cisions.

Archium: The Archium compiler includes a code trans-
formation process, which analyzes the architectural ele-
ments (e.g. components, connectors) and transforms them
where applicable to Java classes. If the implementation
team ignores or disregards the architectural decisions made,
either the compiler or run-time environment will warn and
prohibit violations of the architectural decisions. Conse-
quently, either the implementation team has to realign their
implementation with the architecture, or define new archi-
tectural decisions to adapt it.

Get consequences of an architectural decision

Use-case: The main consequences of a decision are the
changes in the model when a decision is executed. Furth-
more, new decision topics can be introduced, as a conse-
quence of an architectural decision. This use case involves
getting insight in the consequences of the decision.

Legend

Component DecisionConnector
Require Port
Provided Port

Figure 1. Impact of an architectural decision

Archium: Archium provides a visualization of an ar-
chitectural decision by a dependency graph, which gives an
indication of the consequences of the decision. An archi-
tect can asses the consequences of an architectural decision
in the visualizer by hovering over the dependency relation-
ships and see in a tool-tip what architectural entities are re-
sponsible for a dependency. This helps the architect with
evaluating the consequences of an architectural decision.
The architect can also select an architectural decision and
see its impact on the architecture (see figure 1). This is pos-
sible, as the Archium tool explicitly traces the change of an
architectural decision to the architecture [13].

Check for completeness

Use-case:Check if all the decision topics are covered suffi-
ciently in the architectural decisions taken.

Archium: The Archium compiler tries to check and
warn when one or more rationale elements (e.g. motiva-
tions, causes, and problems) are missing. Furthermore, it
provides errors when no implementation is provided for a
chosen alternative, or no alternative is chosen for an archi-
tectural decision.

Detect patterns of architectural decision dependencies

Use-case:In order to be able to check the soundness of the
architecture, it is needed to analyze the decisions taken, and
the dependencies between these decisions. Identify patterns
in the graphs of decisions that can be interpreted in a useful

Architectural
Decision

Modification

Requirements
Model

Architectural
Model + Java

Modifies

Modifies

References

References

Figure 2. Traceability in Archium

fashion, or lead to guidelines for the architects. For exam-
ple: decisions being hubs (”Godlike” decisions), circularity
of a set of decisions, and decisions that gain weight over
time and are thus more difficult to change or remove.

Archium: Archium offers a visualization, which pro-
vides a view on the functional dependencies between archi-
tectural decisions. This is not an automatic pattern detection
(a difficult task by definition), but visualizing the dependen-
cies does support the architect in identifying such patterns.

Check for superfluous architectural decisions

Use-case:The architect wants to know if there are superflu-
ous decisions. This can occur in two situations. Decisions
can overlap (i.e. are redundant), e.g. parts of the decisions
describe the same, or decisions do not affect the current ar-
chitectural model at all (i.e. are unnecessary).

Archium: Archium supports the architect in identifying
one class of superfluous decisions: unnecessary architec-
tural decisions that do not have a function within the archi-
tecture anymore. These architectural decision do not have a
dependency relationship to the main architectural decisions
of the application.

4.3 Traceability

Archium can support many of the use cases due to its
ability to provide traceability among different concepts.
The traceability helps one to get a better understanding
of the design. Figure 2 presents how this works within
Archium. Central to the traceability of Archium is the con-
cept of anArchitectural Decision. It includes aModifica-
tion part, which alters theArchitectural Model/ Implemen-
tation and theRequirements Model. Note, that the archi-
tectural model includes other architectural decisions. Re-
mark as well that the architectural decision also includes
alternative modifications, which have not been chosen. The

Requirement
Category

Parent of

Requirement

Category

Refines Depends on

StakeHolder Desired by

Architectural
Decision

ActorPlayed by ScenarioActs in

Realizes

Creates
Obsoletes
Realizes

Uses
Threatens

Figure 3. Requirements Model of Archium

different relationships Archium supports between model el-
ements can be classified in two distinct types:

Formal relationships are relationships that are defined
in the Archium meta-model. Archium provides explicit
language constructs to express these relationships. The
Archium tooling (see also section 4.4) checks and con-
strains these relationships. Furthermore, the tooling uses
these relations to satisfy some of the use cases. For exam-
ple, most of the modification relationships (see figure 2) are
formally defined and used by the Archium tool to determine
the impact of an Architectural Decision and relate it to the
affected components in the architectural model.
Informal links are relationships that are defined in the tex-
tual descriptions of various Archium concepts (e.g. a moti-
vation or problem of a design decision). They work similar
to hyperlinks and allow the expression of a relationship be-
tween two model elements. However, these links do not
(formally) define the semantics of this relationship. Infor-
mal links are defined by putting a reference to a model ele-
ment between square brackets (e.g. “[ComponentX]”) in a
textual description. To make it easier to relate elements, the
informal links are context aware, i.e. they follow the nam-
ing scope of the surrounding model element in which they
are used.

The formal relationships between architectural decisions
and the requirements model of Archium is presented in fig-
ure 3. In our previous work [13], we already presented how
Archium relates (and therefore provides traceability) archi-
tectural decisions with an architectural model. Therefore,
the focus in this paper is on the traceability between require-
ments and architectural decisions.

The requirements model (see figure 3) is relatively small,
as the primary focus of Archium is on the design part. The
model defines five different relationships between an archi-
tectural decision and a requirement or scenario. Thecre-
atesrelationship is used in the refinement process and traces

Archium

Run-timeCompile-time

.class Archium
Program Java VM

Archium run-time platform

Visualizer Eclipse
Plugin

Archium
Compiler

ArchJava
Compiler

Java
Compiler.archj .java

.java

Figure 4. The Archium tool architecture

which requirements came forth of which architectural deci-
sion. This is important, as often requirements or scenarios
become apparent after an architectural decision is made, as
a lot of requirements and/or scenarios only make sense after
particular decisions.

The obsoletesrelation describes the opposite situation,
due to new insights certain requirements or scenarios may
become obsolete and no longer relevant for the design. The
usesrelationship denotes that an architectural decision uses
a requirement or scenario in its rationale to decide between
multiple alternatives. Therealizesrelationship denotes that
an architectural decisions tries to achieve (a part of) a re-
quirement or scenario. Thethreatensrelationship has the
opposite semantic, i.e. an architectural decision makes the
achievement of a particular requirement or scenario harder.
Remark that the existence of an relationship between an ar-
chitectural decision and a requirement is a confirmation of
the fact a requirement is architectural significant.

4.4 Architecture of the Archium tool

Both the requirements model and the informal links are
implemented as part of the Archium language. This lan-
guage includes an ADL (integrated with Java), design de-
cisions, and the requirements model presented in the previ-
ous section. The concepts behind the design decisions and
ADL part have been explained in earlier work [13]. The lan-
guage is implemented and used in the Archium tool. Fig-
ure 4 presents the architecture of this tool. The tool con-
sists of two main parts: a compile-time part that transforms
Archium code into Java classes; and a run-time part that per-
forms run-time analysis and support, and executes Archium
programs.

The compile-time part works as a pipes-and-filters sys-
tem [24]. It commences with theArchium Compiler, which
transforms Archium code (described in the Archium lan-
guage) into ArchJava [1] and Java code. TheArchJava
and Java Compilersubsequently transform the latter into
Java classes. From a user perspective, this compile pipeline
is completely transparent. TheArchium Compilerinvokes
theArchJavaandJava compilerand provides the user with

feedback (e.g. compile errors and warnings) in terms of the
input Archium code.

The Java classes generated by the compile pipeline con-
stitute theArchium Programcomponent, which is executed
by the run-time part of the Archium tool. TheArchium
Programuses theArchium run-time platform, among other
things, for composition of components and reconfiguration
of the connections made by connectors. TheArchium run-
time platformalso provides services to theVisualizerand
the Eclipse Plugin, in order to allow architects to inspect
the architecture and receive notifications of changes made
to it.

The frontend of theArchium Compilerhas been created
with the help of the Java Compiler Compiler (JavaCC) [14],
which is a parser generator and abstract syntax tree builder.
The input for JavaCC is generated by our ArmPrep tool[2].
ArmPrep is a program, which semi-automatically merges
two JavaCC grammar specifications. This tool is used to
merge the Archium language with the Java language.

The semantic analyzer of theArchium Compilerana-
lyzes the generated abstract syntax tree for the following
constraints:

• Type checking for various constructs in the Archium
language, e.g. whether the interface of a connector is
compatible with a port of a component.

• Naming convention checking, as the Archium lan-
guage consists of several different concepts, compli-
ance to the naming conventions is particular important.

• Relation checking, especially the relations between the
architectural decisions rationale and the architectural
entities.

The other constraint checks, like communication in-
tegrity [1] and Java constraints, are handled by the ArchJava
and Java compiler respectively.

The backend of theArchium Compilerconsists of a tem-
plate code generator. The code generator uses Velocity
Templates [31] to generate ArchJava and Java code for the
various Archium ADL concepts like components, connec-
tors, and architectural decisions. The generated code, that
is the Archium Program, uses theArchium run-time plat-
form to create and maintain a run-time representation of the
architectural model, requirements, and the architectural de-
cisions. This representation enables the user to explore and
make use of the traceability provided within the Archium
model. TheArchium run-time platformprovides a service
to this representation using Java Remote Method Invoca-
tion (RMI). Both theEclipse pluginandVisualizeruse this
service to analyze, trace, and visualize the Archium model.
For the visualization, both utilize the JGraph toolkit [15] to
render and automatically layout the architectural decisions
and components & connectors.

Figure 5. The Archium Eclipse plugin

5 Chat example

5.1 Introduction

To illustrate the Archium tool, an example of a chat pro-
gram is presented in this section. The example consists of
nine architectural decisions, which define the architecture
of the chat program. The architectural decisions are num-
bered chronologically, and marked with the term AD (e.g.
AD1 is the first Architectural Decision).

Writing programs in Archium can be done with the
Archium Eclipse plug-in. Figure 5 shows a screenshot of
this IDE. On the bottom left, a component & connector view
of the architecture of the (running) application is visualized.
The boxes in this figure represent components, the squares
are the ports (black squares are required ports, white pro-
vided) and the lines represent connectors. On the right, the
main editor for the Archium code is shown. In the remain-
der of this section, two situations are discussed to illustrate
what Archium can do.

5.2 Usage scenarios

After the first four architectural decisions have been
made (AD1-AD4), the architecture has been decomposed
in a Client/Serverstyle (AD1). TheClient component con-
sists of aUI and Communicator(AD2). The UI handles
the interaction with the user, while theCommunicatortakes
care of the communication with theServer. Architectural
decision AD3 concerns the structure of the server, but this
is out of scope for this example. Figure 6 shows the state
of the component and connector view after AD1-AD4. The
boxes in this figure denote components, the lines connec-

Figure 6. Chat example architecture after AD4

tors, and the little squares are provided ports (white square)
and required ports (black square).

While implementing theUI (AD4), it seemed that the
Communicatorbecame redundant. The communication
could easily be handled by the components used in theUI.
Before deciding to remove theCommunicator, the deci-
sions dependant on theCommunicatorare checked. This
revealed that AD2 is only affected. An architectural de-
cision (AD5) is made to remove theCommunicator(UC5
and UC2: Check implementation against architectural de-
cisions, add a decision). The Archium compiler is rerun
and the chat program is executed to check for any problems
(UC3: Check for consistency).

The second situation arises when the requirement for the
user interface changes: multiple user interfaces should be
supported. The current state of the architecture is presented
in figure 7. The architect wonders what the consequences
of this change in requirements are and traces the original
requirement to AD2, where an initial decomposition of the
Client is made in anUI andCommunicator(UC6: Get con-
sequences of an architectural decision).

However, theCommunicatoris no longer part of the ar-
chitecture. Tracing the architectural decision dependencies
the architect finds the place where theCommunicatorwas
removed, AD5. As described above, AD5 unfolds theUI
and removes theCommunicatorcomponent. The rationale
of this architectural decision is that the responsibility of the
Communicatorhas been relocated to theController to allow
for easy integration with theUI components.

This knowledge leads the architect to think up two alter-
natives to deal with the changed requirement:

• Reintroducing theUI. This should contain all the com-
ponents in the client with exception of theController.

Figure 7. Chat example architecture after AD8

TheControllercan be reused with different implemen-
tations of theUI.

• A new user interface is regarded as a new implementa-
tion of theClient, thereby creating a specificClient for
each user interface.

From the rationale of AD5, the architect knows that sep-
arating theUI and theController will not be easy and the
last alternative is probably the easiest to achieve.

6 Related work

Software architecture design methods [4, 5] focus on de-
scribing how sound architectural decisions can be made.
Architecture assessment methods, like ATAM [4], assess
the quality attributes of a software architecture, and the
outcome of such an assessment steers the direction of the
decision-making process. Our approach focuses on provid-
ing ways to capture these architectural decisions, and in the
case of Archium, explicitly couple them to the implementa-
tion.

Software documentation approaches [9, 12] provide
guidelines for the documentation of software architectures.
However, these approaches do not explicitly capture the
way to take architectural decisions and the rationale behind
those decisions.

Architectural Description Languages (ADLs) [20] do not
capture the decisions making process in software architect-
ing either. There are two notable exceptions. One is formed
by the architectural change management tool Mae [28],
which tracks changes of elements in an architectural model
using a revision management system. However, this ap-
proach lacks the notion of architectural decisions and does

not capture considered alternatives or rationale about the
architectural model. The second exception is the domain
specific ADL EAML[23], which models architectures for
enterprise applications. In EAML, architectural decisions
justify rationale, which provides the architecture descrip-
tion that in turn influences the architectural decisions. How-
ever, EAML does not describehow architectural decisions
influence the architecture description, which is something
Archium does.

Architectural styles and patterns [24, 8] describe com-
mon (collections of) architectural decisions, with known
benefits and drawbacks. Tactics [4] are similar, as they pro-
vide clues and hints about what kind of techniques can help
in certain situations. However, they do not provide a com-
plete architectural decision perspective, as presented in this
paper.

Currently, there is more attention in the software archi-
tecture community for the decisions behind the architectural
model. Kruchten [16], stresses the importance of architec-
tural decisions, and presents classifications of architectural
decisions and the relationship between them. Tyree and
Akerman [26] provide a first approach on documenting de-
sign decisions for software architectures. Both approaches
model architectural decisions separately and do not inte-
grate them with the architectural model. Closely related to
this is the work of Lago and van Vliet[19], who models as-
sumptions on which architectural decisions are often based,
but not the architectural decisions themselves.

Integration of rationale with design is also done in the
field of design rationale. The SEURAT [7] system, main-
tains rationale in a RationaleExplorer, which is loosely cou-
pled to the source code. This rationale has to be added to
the design tool, to let the rationale of the architecture and the
implementation be maintained correctly. DRPG [3] couples
rationale of well-known design patterns with elements in a
Java implementation. Just like SEURAT, DRPG also de-
pends on the fact that the rationale of the design patterns is
added to the system in advance. The importance of having
support for design rationale was emphasized by the survey
conducted by Tang et al. [25]. The results emphasized the
current lack of good tool support for managing design ra-
tionale.

From the knowledge management perspective, a web
based tool for managing architectural knowledge is pre-
sented in [21]. They use tasks to describe the usage of ar-
chitectural knowledge. These tasks are much more abstract
then the use cases defined in this paper (e.g. architectural
knowledge use, architectural knowledge distribution). They
do propose a framework for capturing architectural knowl-
edge, by using techniques for enquiring knowledge from
human sources, and by mining used patterns. They provide
templates for noting down the knowledge. However, they
do not integrate the AK with the design process, but distil

it, thus it remains separated from the design artifacts.

Finally, another relevant approach is the investigation of
the traceability from the architecture to the requirements
[32]. Wang uses Concern Traceability maps to reengineer
the relationships between the requirements, and to identify
the root causes. Methods similar to the proposed ACCA
method could be used to generate architectural decision in-
formation for Archium.

7 Conclusions & Future work

We believe that the field of software architecture will
make significant progress when architectural decisions are
treated with the same importance as architectural models.
This paper presented nine use cases that described the ben-
efits of architecting with architectural decisions treated as
first-class entities. The presented use cases covered the ba-
sic functionality for a support tool: adding and retrieving
decisions, checks on the relationship with requirements as
well as the implementation, and visualization of the rela-
tionship of architectural decisions with each other.

The Archium tool is a first attempt of realizing the pre-
sented use cases and is aimed at the later stages within de-
sign. It weaves architectural decisions into architectural
models and connects them to the implementation. Archium
supports architects in maintaining the architectural deci-
sions taken in the architecting process. We have described
the functionality of Archium by explaining how it fulfils the
use cases. Specific instances of the use cases in Archium
have been explained with an example. Because Archium
is able to store the architectural decisions explicitly as arti-
facts of the architectural model, it decreases the effects of
knowledge vaporization.

The Archium tool has not been tested yet in an industrial
setting, so empirical verification data is not yet available.
This will take place in the scope of the GRIFFIN project,
where currently four industrial case studies are being con-
ducted at four different industrial companies. The cases
concern different aspects of managing and sharing of ar-
chitectural decisions. Special attention is given to the inte-
gration with the tools currently used by architects (e.g. Mi-
crosoft Word, System Architect, Rationale Rose) in the ar-
chitecting process. These case studies are in the exploratory
phase, and help us to validate the use cases [29] and the do-
main model [10]. In the future, we will evolve Archium ac-
cording to the outcome of these case studies. Furthermore,
we plan todo some experiments to investigate the balance
between the effort of capturing architectural knowledge and
its benefits. We are also thinking about integrating Archium
with other tools, support for more architectural views, and
support for team work.

Acknowledgements

This research has partially been sponsored by the Dutch
Joint Academic and Commercial Quality Research & De-
velopment (Jacquard) program on Software Engineering
Research via contract 638.001.406 GRIFFIN: a GRId For
inFormatIoN about architectural knowledge. We would like
to thank the people from the GRIFFIN project for the coop-
eration in creating the use cases.

References

[1] J. Aldrich, C. Chambers, and D. Notkin. Archjava: connect-
ing software architecture to implementation. InProceedings
of the 24th international conference on Software engineer-
ing, pages 187–197. ACM Press, 2002.

[2] Archium website, . http://www.archium.net.
[3] E. L. A. Baniassad, G. C. Murphy, and C. Schwanninger.

Design pattern rationale graphs: Linking design to source.
In Proceedings of the 25th ICSE, pages 352–362, May 2003.

[4] L. Bass, P. Clements, and R. Kazman.Software architecture
in practice 2nd ed.Addison Wesley, 2003.

[5] J. Bosch.Design & Use of Software Architectures, Adopting
and evolving a product-line approach. ACM Press/Addison
Wesley, 2000.

[6] J. Bosch. Software architecture: The next step. InSoft-
ware Architecture, First European Workshop (EWSA), vol-
ume 3047 ofLNCS, pages 194–199. Springer, May 2004.

[7] J. E. Burge and D. C. Brown. An integrated approach for
software design checking using design rationale. In1st In-
ternational Conference on Design Computing and Cognition
(DCC ’04), pages 557–576, July 2004.

[8] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. A system of patterns. John Wiley & Sons, Inc.,
1996.

[9] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers,
R. Little, R. Nord, and J. Stafford.Documenting Software
Architectures, Views and Beyond. Addison Wesley, 2002.

[10] R. Farenhorst, R. C. de Boer, R. Deckers, P. Lago, and
H. van Vliet. What’s in a domain model for sharing architec-
tural knowledge? InProceedings of the 18th International
Conference on Software Engineering and Knowledge Engi-
neering (SEKE2006), July 2006.

[11] Griffin project website, . http://griffin.cs.vu.nl.
[12] C. Hofmeister, R. Nord, and D. Soni.Applied software ar-

chitecture. Addison Wesley, 2000.
[13] A. G. J. Jansen and J. Bosch. Software architecture as a set

of architectural design decisions. InProceedings of WICSA
5, pages 109–119, November 2005.

[14] JavaCC website, . http://javacc.dev.java.net/.
[15] JGraph website, . http://www.jgraph.org.
[16] P. Kruchten. An ontology of architectural design decisions

in software intensive systems. In2nd Groningen Workshop
on Software Variability, pages 54–61, December 2004.

[17] P. Kruchten, P. Lago, and H. van Vliet. Building up and rea-
soning about architectural knowledge. InProceedings of the
Second International Conference on the Quality if Software
Architectures (QoSA 2006), June 2006.

[18] P. Kruchten, P. Lago, H. van Vliet, and T. Wolf. Building
up and exploiting architectural knowledge. InWICSA 5,
November 2005.

[19] P. Lago and H. van Vliet. Explicit assumptions enrich ar-
chitectural models. InICSE ’05: Proceedings of the 27th in-
ternational conference on Software engineering, pages 206–
214, New York, NY, USA, 2005. ACM Press.

[20] N. Medvidovic and R. N. Taylor. A classification and
comparison framework for software architecture description
languages. IEEE Transactions on Software Engineering,
26(1):70–93, 2000.

[21] I. G. Muhammad Ali Babar and R. Jeffery. Toward a frame-
work for capturing and using architecture design knowledge.
Technical Report UNSW-CSE-TR-0513, University of New
South Wales, Australia ans National ICT Australia Ltd., june
2005.

[22] D. E. Perry and A. L. Wolf. Foundations for the study of
software architecture.ACM SIGSOFT Software Engineering
Notes, 17(4):40–52, 1992.

[23] S. Sarkar and S. Thonse. Eaml- architecture model-
ing language for enterprise applications. InCEC-EAST
’04: Proceedings of the E-Commerce Technology for Dy-
namic E-Business, IEEE International Conference on (CEC-
East’04), pages 40–47, Washington, DC, USA, 2004. IEEE
Computer Society.

[24] M. Shaw and D. Garlan.Software architecture: perspectives
on an emerging discipline. Prentice-Hall, Inc., 1996.

[25] A. Tang, M. A. Babar, I. Gorton, and J. Han. A survey of the
use and documentation of architecture design rationale. In
Proceeding of the Fifth Working IEEE / IFIP Conference on
Software Architecture (WICSA 2005), pages 89–99, Novem-
ber 2005.

[26] J. Tyree and A. Akerman. Architecture decisions: Demysti-
fying architecure.IEEE Software, 22(2):19–27, 2005.

[27] The Unified Modeling Language (UML) website, .
http://www.uml.org/.

[28] A. van der Hoek, M. Mikic-Rakic, R. Roshandel, and
N. Medvidovic. Taming architectural evolution. InProceed-
ings of the 8th European software engineering conference,
pages 1–10. ACM Press, 2001.

[29] J. S. van der Ven, A. G. J. Jansen, P. Avgeriou, and D. K.
Hammer. Using architectural decisions. InSecond Inter-
national Conference on the Quality of Software Architecture
(Qosa 2006), 2006.

[30] J. S. van der Ven, A. G. J. Jansen, J. A. G. Nijhuis, and
J. Bosch. Design decisions: The bridge between rationale
and architecture. In A. H. Dutoit, R. McCall, I. Mistrik,
and B. Paech, editors,Rationale Management in Software
Engineering, chapter 16, pages 329–348. Springer-Verlag,
march 2006.

[31] Velocity website, . http://jakarta.apache.org/velocity.
[32] Z. Wang, K. Sherdil, and N. H. Madhavji. ACCA:

An architecture-centric concern analysis method. In5th
Working IEEE/IFIP Conference on Software Architecture
(WICSA), November 2005.

[33] H. Zhuge.The Knowledge Grid. World Scientific Publishing
Company, 2004.

