
Using Architectural Decisions
Jan S. van der Ven, Anton Jansen, Paris Avgeriou, and Dieter K. Hammer

University of Groningen, Department of Mathematics and Computing Science,
PO Box 800, 9700AV Groningen, The Netherlands,

[salvador|anton|paris|dieter]@cs.rug.nl,
WWW home page:http://search.cs.rug.nl

Abstract— There are increasing demands for the explicit rep-
resentation and subsequent sharing and usage of architectural
decisions in the software architecting process. However, there is
little known on how to use these architectural decisions, or what
type of stakeholders need to use them. This paper presents a
use case model that arose from industrial needs, and is meant to
explore how these needs can be satisfied through the effective
usage of architectural decisions by the relevant stakeholders.
The use cases are currently being validated in practice through
industrial case studies. As a result of this validation, we argue
that the usage of architectural decisions by the corresponding
stakeholders can enhance the quality of software architecture.

I. I NTRODUCTION

One of the proposed ways to advance the quality of software
architecture is the treatment of architectural decisions [1], [2],
[3], [4] as first-class entities and their explicit representation
in the architectural documentation. From this point of view,
a software system’s architecture is no longer perceived as
interacting components and connectors, but rather as a set of
architectural decisions [5]. The main reason that this paradigm
shift improves the quality of software architecture is that it
reducesArchitectural Knowledge Vaporization[1], [5]. It is
presently not possible to completely eliminate vaporization,
as the result still depends on the judgment and the chosen
tradeoffs that the architect makes.

Architectural knowledge vaporizes because most of the
architectural decisions, which are the most significant form of
architectural knowledge [6], are lost during the development
and evolution cycles. This is due to the fact that architectural
decisions are neither documented in the architectural docu-
ment, nor can they be explicitly derived from the architectural
models. They merely exist in the form of tacit knowledge
in the heads of architects or other stakeholders, and thus
inevitably dissipate. The only way to resolve this problem is
to grant architectural decisions first-class status and properly
integrate them within the discipline of software architecture.

Although the domain of architectural decisions is receiving
increasing attention by the software architecture community,
there is little guidance as to how architectural decisions can be
used during both architecting and in the general development
process. In fact, in order to give architectural decisions first-
class status there should be a systematic approach that can
support their explicit documentation and usage by the architect
and the rest of the stakeholders. We believe that it is too
early at this stage to introduce methods or processes, and
even more so supporting systems for creating and subsequently

using architectural decisions. We argue that, first, we need to
understand the complex nature of architectural decisions, and
their role in the software development process and within an
organization.

To achieve this goal, we present in this paper a use case
model, that elaborates on two important issues: first, which
are the stakeholders that need to use architectural decisions;
second, how can the decisions be used by the relevant
stakeholders. We have worked with industrial partners to
understand the exact problems they face with respect to loss of
architectural decisions. We have thus compiled a wish list from
practitioners on the use of architectural decisions. Furthermore
we have combined this wishlist with what we consider as the
ideal requirements for a system that supports the usage of
architectural decisions. We have thus followed both a bottom-
down and a top-down approach and finally merged them into
a use case model that represents real and ideal industrial
needs for effective usage of architectural decisions. Finally,
we validated this use case model in practice, by applying it at
the industrial partners in small case studies.

The idea of a use case model for using architecture knowl-
edge was introduced in [2], which forms the foundation work
for our paper. This idea is further elaborated in [7]. It discusses
the concept of architectural knowledge, from an ontological
perspective, and typical usages of architectural knowledge in
a broad context.

The rest of the paper is structured as follows: in Section 2
we give an overview of how our industrial partners defined the
needs for using and sharing architectural decisions. Section 3
presents the use case model, including the actors and system
boundary. The ongoing validation of the use cases is conducted
in Section 4. Section 5 discusses related work in this field and
Section 6 sums up with conclusions and future work.

II. FROM INDUSTRIAL NEEDS TOUSE CASES

The use cases that are described in the rest of the paper refer
to a potential system that would support the management of
architectural decisions. To the best of our knowledge, there
is no such system implemented yet. We envision this system
as a Knowledge Grid [8]: “an intelligent and sustainable
interconnection environment that enables people and machines
to effectively capture, publish, share and manage knowledge
resources”.

Before pinpointing the specific requirements for a knowl-
edge grid in the next sections, it is useful to consider the more

generic requirements by combining the areas of knowledge
grids and architectural decisions. First, this system should
support the effective collaboration of teams, problem solv-
ing, and decision making. It should also use ontologies to
represent the complex nature of architectural decisions, as
well as their dense inter-dependencies. Furthermore, it must
effectively visualize architectural decisions and their relations
from a number of different viewpoints, depending on the
stakeholders’ concerns. Finally, it must be integrated with the
tools used by architects, as it must connect the architectural
decisions to documents written in the various tools or design
environments, and thus provide traceability between them.

We are currently participating in the Griffin project [9] that
is working on tools, techniques and methods that will perform
the various tasks needed for building this knowledge grid.
Until now, the project has produced two main results: a use
case model, and a domain model. The domain model describes
the basic concepts for storing, sharing, and using architectural
decisions and the relationships between those concepts [10].
The use case model describes the required usages of the
envisioned knowledge grid. The use cases are expressed in
terms of the domain model, in order to establish a direct link
between the concepts relevant to architectural decisions (the
domain model), and how the architectural decisions should be
used (use cases). The focus in this paper is on the use case
model.

Four different industrial partners participate in the Griffin
project. They are all facing challenges associated to architec-
tural knowledge vaporization. Although the companies are of
different nature, they all are involved in constructing large
software-intensive systems. They consider software architec-
ture of paramount importance to their projects, and they all
use highly sophisticated techniques for maintaining, sharing
and assessing software architectures. Still, some challenges
remain.

We conducted qualitative interviews with 14 employees of
these industrial partners. Our goal was to analyze the prob-
lems they faced concerning sharing architectural knowledge,
and to identify possible solutions to these problems. People
with different roles were interviewed: architects (SA), project
managers (PM), architecture reviewers (AR), and software
engineers (SE). A questionaire (see the appendix at the end of
this paper) was used to streamline and direct the interviews.
The questionaire was not directly shown to the employees, but
used as a starting point and checklist for the interviewers.

The results from the interviews were wrapped up in in-
terview reports that described the current challenges and
envisioned solutions by these companies. The interview reports
contained some needs from the interviewees, which included:

1) Find relevant information in large architectural descrip-
tions (SA, PM, AR).

2) Add architectural decisions, relate them to other archi-
tectural knowledge like architectural documentation, or
requirement documentation (SA, PM).

3) Search architectural decisions and the underlying reasons,
construct (multiple) views where the decisions are repre-

sented (SA, PM, AR).
4) Identify what knowledge should minimally be made

available to let developers work effectively (SA).
5) Identify the changes in architectural documentation (PM).
6) Identify what architectural decisions have been made in

the past, to avoid re-doing the decision process. This
include identifying what alternatives were evaluated and
the issues that played some critical role at that time (SA,
PM, AR, SE).

7) Reuse architectural decisions (SA, PM, SE).
8) Keep architecture up-to-date during development and

evolution (SA, PM).
9) Get an overview of the architecture (SA, PM, AR).

The interview reports and the needs stated in these reports
form the starting point for constructing the use cases. Except
for this bottom-up approach we also followed a top-down
approach: we thought about the ideal usages of a system that
supports the usage of architectural knowledge. This was neces-
sary as most of the interviewees had a rather implicit and vague
notion of architectural decisions and had not thought of using
architectural decisions, represented as first-class entities. Both
real needs from the interviewees and ideal needs proposed
by the research group were merged into a use case model
presented in the next section.

III. T HE USE CASE MODEL

This section elaborates on a set of use cases that roughly
define the requirements for a potential knowledge grid. First,
we describe the actors of the knowledge grid, starting from
the roles of our interviewees. After this, the primary actor
and the scope are discussed. To understand the dependencies
between the use cases a use case model consisting of 27
use cases, including the relations, is presented in figure 1.
Besides presenting the dependencies among the use cases,
the figure also relates the use cases to the identified needs
described in the previous section. Note that this is not a one-
to-one mapping; some needs resulted in multiple use cases and
few use cases do not originate from needs but from ‘ideal’
requirements.

A. Actors

We identified the following actors being relevant for the use
cases, based on the roles of the interviewees.

• Architect.Architects should be able to create and manage
an architecture, and get an overview of the status of the
architecture. This results in demands for views that show
the coverage of requirements or describe the consistency
of the design. Also, the architect is responsible for pro-
viding stakeholders with sufficient information, to ensure
that their concerns are met in the architecture design.

• Architecture Reviewer.Architecture reviewers are often
interested in a specific view on the architecture. They can
be colleagues, experts from a certain field, or reviewers
from an external organization. They want to understand
the architecture quickly and want to identify potential pit-
falls in the architecture, like poorly founded architectural

Knowledge Grid

17

Project
Manager

Architecture
Reviewer

Architect

Maintainer

All

Summary User-Goal Subfunction

2

16

4

5

26

14

24

25

1

6

9

11

15

21

23

10

12

18

19

22

20

13

8

3

7
27

Legend

X

Use case X Actor Includes
relationship

Use Case Titles

1. Check implementation against architectural
 decisions (need 8)
2. Identify the subversive stakeholder (need 3)
3. Identify key architectural decisions for a specific
 stakeholder (need 1,9)
4. Perform a review for a specific concern (need 3)
5. Check correctness (need 8, 9)
6. Identify affected stakeholders on change
 (need 3)
7. Identify unresolved concerns for a specific
 stakeholder (need 9)
8. Keep up-to-date (need 5)
9. Inform affected stakeholders (need 5)
10. Retrieve an architectural decision (need 6)
11. View the change of the architectural decisions
 over time (need 5)
12. Add an architectural decision (need 2)
13. Remove consequences of a cancelled
 architectural decision (need 8)
14. Reuse architectural decisions (need 14)
15. Recover architectural decisions (need 6, 7)
16. Perform incremental architectural review
 (need 1, 9)
17. Assess design maturity (need 1)
18. Evaluate impact of an architectural decision
19. Evaluate consistency (need 1)
20. Identify incompleteness (need 1)
21. Conduct a risk analysis
22. Detect patterns of architectural decision
 dependencies
23. Check for superfluous architectural decisions
24. Cleanup the architecture
25. Conduct a trade-off analysis (need 3)
26. Identify important architectural drivers (need 3)
27. Get consequences of an architectural decision
 (need 3, 6)

Fig. 1. Use case diagram

decisions, architectural incompleteness, or architectural
inconsistency.

• Project Manager.The concerns of the project manager
are usually driven by the planning; what is the status of
the architecture, are there potential upcoming problems
or risks, and how can we address them? The project
manager also addresses people-related issues, e.g. which
stakeholder is the biggest risk for the architecture?

• Developer.The primary concern of the developer is that
the architecture should provide sufficient information
for implementing the system. The descriptions must be
unambiguous. Also, the developer must know where to
look for the necessary knowledge; this can be in the
architectural documentation, or by knowing which person
to contact.

• Maintainer. The maintainer is often ignored as a stake-
holder of an architecture. However, the maintainer is one
of the most important actors when the architecture has
to evolve. The maintainer has interest in the evolution
of the architecture (up-to date information), and the
consequences of changes in the architecture.

We encountered that the different companies used different
terms for the roles they have in the software development
process. The list of actors presented above is an abstraction
of those different roles.

B. Describing the use cases

We present the use cases, as mandated in [11], using the
following elements:

• Scope.All the use cases are defined as an interaction on
a knowledge grid type of system (see section 2.1). From
the use case model perspective, this system is considered
a black-box system.

• Goal level. The descriptions from the interviews were
very diverse in detail. As a consequence, some use cases
describe a single interaction on the system (e.g. add
an architectural decision), while others are very high-
level demands of the system (e.g. perform an incremental
architectural review). We adopted three goal levels from
[11] of a decreasing abstraction: Summary, User-goal and
Subfunction, for describing this difference. A Summary
goal use case can involve multiple User-goals use cases,
and often have a longer time span (hours, days). A
User-goal use case involves a primary actor using the
system (in Business Process Management often called
elementary business process), often in one session of
using the system. Subfunction use cases are required to
carry out User-goal use cases. They typically represent
an elementary action on the system, which is used by
multiple User-goal use cases.

• Primary actor.The list of actors described in section III-
A are used to determine the primary actor for a specific
use case. Sometimes, a use case can be performed by all
actors (e.g. identify key architectural decisions). In these
cases, the term All is used as a substitute for the primary
actor. In other cases, when the type of actor affects the

use case, the most suitable actor was selected as primary
actor, and the others were left out.

• Main success scenario and steps.First, a short description
of the use case was constructed. From this, a set of steps
was defined, describing the main success scenario. Due to
space constraints, this is not shown for all the use cases.
In the next section, four use cases are described in detail.

• Includes relationships.The “include” relationships be-
tween the use cases are based on the steps defined for
these use cases. This relationship expresses that a use case
contains behavior defined in another use case, as defined
in UML 2.0 [12]. When a use case includes another use
case with a different primary actor, this typically means
that the first actor will ask the second actor to perform the
specified use case. For example, in use case 2 (Identify
the subversive stakeholder), the project manager will ask
the architect to conduct a risk analysis (use case 21). Off
course one person can also have multiple roles, and thus
perform as the primary actor in both use cases.

Figure 1 presents the characteristics (Primary actor, goal
level, and name) of the use case model, which consists
of 27 use cases. Note that to enhance the readability, the
uses relationship (between the actor and the use case) is
not visualized with arrows, but by horizontal alignment. For
example, the architecture reviewer acts as a primary actor for
use cases 16, 4, 26, and 5. The use cases are vertically divided
in the three goal levels: Summary, User-goal and Subfunction.
For example, use case 16 is a Summary use-case and use case
4 an User-goal.

IV. U SE CASE VALIDATION

A use case model like the one presented in section III
can not be directly validated in a formal, mathematical sense.
Instead, the use cases need to be applied in practice and their
effect on the development process should be evaluated. How-
ever, before the use cases can be applied, the use cases need
further refinement to become usefull. In this validation section,
we present these refinements, demonstrate the relevance of the
use cases in an industrial setting, and present the improvement
these use-cases have made on the development process.

Currently, the Griffin project is involved in conducting case
studies at our industrial partners to validate the use cases.
In this section we briefly present the Astron Foundation case
study. Astron is currently engaged in the development of the
LOw Frequency ARray (LOFAR) for radio astronomy [13].
LOFAR pioneers the next generation of radio telescope and
will be the most sensitive radio observatory in the world.
It uses many inexpensive antennas combined with software,
instead of huge parabolic dishes, to observe the sky. This
makes LOFAR a software intensive telescope. LOFAR will
consists of around 15.000 antenna’s distributed over 77 differ-
ent stations. Each antenna will generate around 2 Gbps of raw
data. The challenge for LOFAR is to communicate and process
the resulting 30Tbps data stream in real-time for interested
scientists.

In the LOFAR system, architectural decisions need to be
shared and used over a time span of over 25 years. This is
due to the long development time (more then 10 years), and
a required operational lifetime of at least 15 years. Astron is
judged by external reviewers on the quality of the architecture.
The outcome of these reviews influences the funding, and
consequently the continuation of the project. Therefore, it is
evident that the architecture has to hold high quality standards.

Together with Astron, we identified eight use cases being of
primary concern for the LOFAR case study: 5, 7, 10, 12, 15,
17, 19, and 20. This section focuses on assessing the design
maturity, which is a major concern for Astron. Assessing the
design maturity is a specialization of the earlier identified need
for getting an overview of the architecture (see section II, need
9). The following use-cases are relevant with regard to this
assessment:

• Asses design maturity (UC 17, see figure 2)
• Identify incompleteness (UC 20, see figure 3)
• Check correctness (UC 5, see figure 4)
• Evaluate consistency (UC 19, see figure 5)
Of these four use cases, use case 17 is the onlySummary

level use case (see figure 1). Use cases 5, 19, and 20 are
used by this use case. In the remainder of this section, these
use cases are presented in more detail. For each use case, the
following is presented: the relevance to Astron, the current
practice at Astron, a more elaborate description of the use
case, and the envisioned concrete realization within Astron.

The elaborated use case descriptions make use of the
concept ofknowledge entity. All the domain concepts defined
within the knowledge grid are assumed as being knowledge
entities. For this case study, this includes among others:
architectural decisions, rationales, decision topics, alternatives,
requirements, specifications, assumptions, rules, constraints,
risks, artifacts, and the relationships among them.

A. UC 17: Assess design maturity

RelevanceThe design maturity is an important part of the
quality of the LOFAR architecture. LOFAR is constructed
using cutting edge technology to enquire maximum perfor-
mance. However, due to the long development time, these
cutting edge technologies are typically emerging when the
initial architecture design is being made. So, the architecture
has to be made with components that do not yet exist. It is
therefore hard for Astron to make a judgment whether the
architecture is sufficiently matured to start actual construction.
Current Practice Within the LOFAR case study, the design
maturity is first assessed for the various subsystems by each
responsible architect. For each subsystem the main issues with
regard to incompleteness, correctness, and consistency are
reported. Based on these reports, the opinions of the architects
and project management it is decided whether the system is
mature enough to be proposed to the external reviewers to
proceed to the next project phase.
Use case realizationThe design maturity use case is presented
in figure 2. This use case consists of three other use cases that
in turn are used to check the architecture for completeness,

UC 17: Assess design maturity

Description: This use case verifies whether a system con-
forming to the architecture can be made or bought. The archi-
tect wants to know when the architecture can be considered
as finished, complete, and consistent.
Primary actor: Project Manager.
Scope: Knowledge grid
Level: Summary.
Precondition: None.
Postcondition: The knowledge grid provides an overview
of the matureness, and reports potential risks.
Main success scenario:

1) Identify incompleteness (UC 20)
2) Check correctness (UC 5)
3) Evaluate consistency (UC 19)
4) The grid generates a report based on the knowledge of the

previous steps

Extensions: None

Fig. 2. Use case 17

correctness, and consistency. These use cases are presented in
the remainder of this section.

B. Use Case 20: Identify incompleteness

RelevanceUse case 20 determines whether the architecture
covers all (essential) requirements. For Astron this is relevant
from a management perspective; incompleteness gives pointers
to directions where additional effort should be concentrated.
Current practice Astron checks for the completeness of the
architecture description by peer review and risk assessment.
The peer review is done iteratively; fellow architects give
feedback (among others) on the completeness of the archi-
tectural descriptions. A risk assessment is performed before
every external review. The result of this process, a risk matrix,
is used for the next iteration of the architectural description.
During the design phase, the architect signifies specific points
of incompleteness, typically by putting keywords like ‘tbd’
(to be determined), or ‘tbw’ (to be written) in the architecture
documents.

For example, in the central processor, the signals of the
antenna’s should be correlated with each other. Therefore, the
signals of all the stations should be routed all-to-all. However,
the architectural decision on what network topology to use
for this task is still incomplete, as some alternatives have
been evaluated, but no suitable (cost-effective) solution can
be selected so far.
Use case realizationThe general use case is described in
figure 3. For Astron this is realized by the following:

Risks Currently, the relationships between the identified
risks (for example in the risk matrix) and the design (in
the architectural documentation) are not explicitly clear. The
knowledge grid allows the architect to relate risks to particular
parts of the design and to architectural decisions. This use case
enables the architect topartially check the completeness of

Use Case 20: Identify incompleteness

Description: In this use case, the system provides a report
about the structure of the architectural decisions.
Primary actor: Architect.
Scope: Knowledge grid
Level: User-goal.
Precondition: The user is known within the knowledge grid.
Postcondition: The knowledge provides an overview of the
incomplete knowledge entities.
Main success scenario:

1) The architect selects a part of the architecture.
2) The knowledge grid identifies the knowledge entities in

the part.
3) The grid reports about the incompleteness of these knowl-

edge entities.

Extensions: None

Fig. 3. Use case 20

the mitigation of risks, as every risk should be addressed by
at least one architectural decision. Whether the risk is actually
addressed by the decision, is checked by UC 5, presented in
the next subsection.

RequirementsAs an example of inconsistency indicators
every requirement should lead to one or more (mostly non-
formal, usually textual) specifications. It can thus be automat-
ically determined which requirements are not covered by any
specifications.

VisualizationPossibilities of visualization for incomplete-
ness can be visualized by a “to-do” list of open decision
topics, or visual indicators in the documentation (e.g. icons,
or coloring of text pieces).

C. Use Case 5: Check correctness

RelevanceBesides completeness, it is also important to know
whether the architectural decisions actually address the re-
quirements. In this sense, correctness is complimentary to
completeness. For example, completeness only means that
there exist decisions taken with respect to all requirements,
while correctness means that these decisions actually lead
to a solution that meets these requirements. Astron spends
considerable effort in verifying the correctness of the design.
Prototypes of major hardware and software components are
made and evaluated. Simulations and models are used as well.
For example, to deal with the major concern of the enormous
amounts data to be processed, Astron has developed an elab-
orate performance model. This model allows the architects
to simulate and validate the correctness of many different
concepts for distributed data processing.
Current practice Similar to the check for completeness, peer
reviews are used to verify the correctness of the design descrip-
tion. Domain experts verify the design description created by
the architect. Based on this feedback, the architect adapts the
design description. Doubts about the correctness of parts of
the design are typically annotated with the key word ‘tbc’ (to

Use Case 5: Check correctness

Description: In this use case, the knowledge grid supports
the user in validating the correctness of the architectural
decisions addressing the requirements.
Primary actor: Architect.
Scope: Knowledge grid
Level: Subfunction.
Precondition: The knowledge grid contains incompleteness
information of the design.
Postcondition: The knowledge grid contains markings
about the correctness; An overview of incorrect knowledge
entities is provided.
Main success scenario:

1) The architect selects a set of requirements in the knowl-
edge grid.

2) The knowledge grid provides a list of related architec-
tural decisions and other related knowledge entities (e.g.
assumptions, rules, constraints).

3) The architect evaluates related elements and marks the
incorrect elements.

4) The architect continues with the next requirement.
5) The knowledge grid provides an overview of incorrect

architectural decisions and requirements.

Extensions:
3a. The elements are correct, the architect marks them as
such.

Fig. 4. Use case 5

be confirmed) or placed in a separate open issue sections. If
there is any doubt about theway in which the correctness is
verified, keywords like ‘under discussion’ are typically used
in the architectural documentation.

For example, there has been an incorrect assessment of
the distributed behavior of the used calibration algorithm. It
was expected that each node used 80% local data, and that
for the remaining 20% all the data on the other nodes was
needed. Based on this assessment the architectural decision
was made to use a distributed database grid. However, during
performance tests it turned out that for this 20% the data of
only one or two other nodes was needed, instead ofall the
other nodes. Consequently, the architectural decision turned
out to be wrong, as the architectural decision for a centralized
database is a significant better alternative. In retrospect, ver-
ification of the architectural decision by the correct domain
expert could have prevented this situation from arising in the
first place.
Use Case realizationThe knowledge grid itself cannot de-
termine the correctness of the architectural decisions without
in-depth semantic knowledge of the underlying architectural
models. Therefore, this use case makes provision for assisting
the architect in determining the correctness of the design,
rather than that the knowledge grid determines the correctness
itself.

RequirementsFor each requirement or risk, the architect
needs to find out whether the involved architectural decisions
correctly address the requirement or risk. This use case de-
scribes how this process can be supported.

VisualizeThe visualization of the incompleteness can sub-
sequently be used to visualize incorrect elements. However,
since the checking of correctness is mostly manual job for
the architect, the results may vary when different people are
checking the correctness. Integration of this information is then
needed.

D. Use Case 19: Evaluate consistency

RelevanceThis use case is concerned with the consistency
between the architectural decisions themselves. As the LOFAR
project consists of many components that are developed in
parallel, detecting contradictions is important, as this provides
an early warning for mistakes in the overall design. Inconsis-
tencies make the design of the system harder to understand
and create problems during the realization of the system.
Current practice Checking for inconsistencies in textual
descriptions is largely a manual job. The part of the design that
is modeled (e.g. in the performance models) can automatically
be checked for inconsistencies. However, they only cover a
very small part of the overall design, and therefore a small
part of the architectural decisions. Most of the inconsistencies
are found by inspection, either by the architect or reviewer.

For example, there has been an inconsistency in LOFAR
between the protocol used by the central processor (the cor-
relator of the radio signals) and the stations (the locations
where the antenna’s are residing). Although large efforts have
been put in a consistent definition of the data packet header,
versioning etc., the used definition of how to interpret the
subband data turned out to be inconsistent. For the station a
subband was defined starting with the lowest frequency leading
to the highest frequency of the subband, while for the central
processor it was defined the other way around.
Use case realizationThe architect is supported with rel-
evant context information in the decision making process.
For Astron, this will include the visualization of relevant
requirements, and closely related architectural decisions and
specifications. Techniques similar to the work of [14] could be
used for this. Furthermore, once an inconsistency is detected,
the architect is supported with a visualization of the relevant
architectural decisions. This allows the architect not only to
confirm an inconsistency, but also to detect its cause and
consequently resolve it.

V. RELATED WORK

Software architecture design methods [15], [16] focus on
describing how sound architectural decisions can be made.
Architecture assessment methods, like ATAM [15], assess the
quality attributes of a software architecture. The use cases pre-
sented in this paper describe some assessment scenarios that
could be reused from these design and assessment methods.

Software documentation approaches [17], [18] provide
guidelines for the documentation of software architectures.

Use Case 19: Evaluate consistency

Description: In this use case, the knowledge grid supports
the user in detecting inconsistencies in the architecture
design.
Primary actor: Architect.
Scope: Knowledge grid.
Level: User-goal.
Precondition: The user is known within the knowledge grid.
Postcondition: The knowledge grid contains markings
about the consistency; An overview of inconsistent knowl-
edge entities is provided.
Main success scenario:

1) The architect selects a subset of architectural knowledge
in the grid.

2) Architect selects a specific knowledge entity or a part of
the design, and asks the knowledge grid for consistency
assistance.

3) The knowledge grid provides a list of related (and poten-
tially inconsistent) knowledge entities.

4) The architect marks the inconsistent knowledge entities.
5) The architect repeats steps 3 and 4 for the remaining

knowledge entities.
6) The knowledge grid provides an overview of inconsistent

knowledge.

Extensions:
4a. The knowledge entities are consistent, the architect marks
them as such.

Fig. 5. Use case 19

However, these approaches do not explicitly capture the way
to take architectural decisions and the rationale behind those
decisions. The presented use cases describe how stakeholders
would like work with this knowledge.

Architectural Description Languages (ADLs) [19] do not
capture the decisions making process in software architecting
either. An exception is formed by the architectural change
management tool Mae [20], which tracks changes of elements
in an architectural model using a revision management sys-
tem. However, this approach lacks the notion of architectural
decisions and does not capture the considered alternatives or
rationales, something the knowledge grid does.

Architectural styles and patterns [21], [22] describe common
(collections of) architectural decisions, with known benefits
and drawbacks. Tactics [15] are similar, as they provide
clues and hints about what kind of techniques can help in
certain situations. Use case 22 (Detect patterns of architectural
decision dependencies), can be used to find these kinds of
decisions.

Currently, there is more attention in the software archi-
tecture community for the decisions behind the architectural
model. Tyree and Akerman [3] provide a first approach on doc-
umenting design decisions for software architectures. Concepts
and guidelines for explicit representations of architectural
decisions can be found in the work of Babar et al. [23] and

our own work [5], [6]. Closely related to this is the work of
Lago and van Vliet [24]. They model assumptions on which
architectural decisions are often based, but not the architectural
decisions themselves. Kruchten et al. [2], stress the importance
of architectural decisions, and show classifications of archi-
tectural decisions and the relationship between them. They
define some rough outlines for the use cases for describing
how to use architectural knowledge. Furthermore, they provide
an ontology based visualization of the knowledge in the grid.
We emphasize more on the explicit modeling of the use cases
and are validating a set of extended use cases in the context
of a case study.

Integration of rationale and design is done in the field
of design rationale. SEURAT [25] maintains rationales in a
RationaleExplorer, which is loosely coupled to the source
code. These rationales have been transferred to the design tool,
to let the rationales of the architecture and implementation
level be maintained correctly. DRPG [26] couples rationale
of well-known design patterns with elements in a Java im-
plementation. Just like SEURAT, DRPG also depends on the
fact that the rationale of the design patterns is added to the
system in advance. The importance of having support for
design rationales was emphasized by the survey conducted by
Tang et al. [4]. The results emphasized the current lack of good
tool support for managing design rationales. The use cases
presented in this paper are an excellent start for requirements
for such tools.

From the knowledge management perspective, a web based
tool for managing architectural knowledge is presented in [23].
This approach uses tasks to describe the use of architectural
knowledge. These tasks are much more abstract then the use
cases defined in this paper (e.g. architectural knowledge use,
architectural knowledge distribution).

Finally, another relevant approach is the investigation of
the traceability from the architecture to the requirements
[27]. Wang uses Concern Traceability maps to reengineer the
relationships between the requirements, and to identify the root
causes. The results from such systems could be valuable input
for defining the relationships between knowledge entities, as
used in our validation.

VI. CONCLUSIONS ANDFUTURE WORK

In order to upgrade the status of architectural decisions, we
must first understand how they can be shared and used by a
software development organization. For this purpose, we have
proposed a use case model that came out of industrial needs
and aims to fill specific gaps and in particular to alleviate the
dissipation of architectural decisions. This use case model is
considered as the black-box view of a knowledge grid type
of system that is envisioned to enrich the architecting process
with architectural decisions.

A reasonable question to reflect upon is: how exactly was
the software architecture quality enhanced by the use case
model proposed in this paper? Although pinpointing what
exactly constitutes the quality of software architecture per se
is a difficult issue, we can identify five arguments in this case:

• Less expensive system evolution. As the systems need
to change in order to deal with new requirements, new
architectural decisions need to be taken. Adding, remov-
ing and modifying architectural decisions can be based
on the documentation of existing architectural decisions
that reflect the original intent of the architects. Moreover,
architects may be less tempted to violate or override exist-
ing decisions, and they cannot neglect to remove them.
In other words the architectural decisions are enforced
during evolution and the problem ofarchitectural erosion
[28] is reduced.

• Enhanced stakeholder communication. The stakehold-
ers come from different backgrounds and have different
concerns that the architecture document must address.
Architectural decisions may serve the role of explaining
the rationale behind the architecture to all stakeholders.
Furthermore, the explicit documentation of architectural
decisions makes it more effective to share them among
the stakeholders, and subsequently perform tradeoffs,
resolve conflicts, and set common goals.

• Improved intrinsic characteristics of the architec-
ture. These concern attributes of the architecture, such
as conceptual integrity, correctness, completeness and
buildability [15]. Architectural decisions can support the
development team to upgrade such attributes, because
they give more complete knowledge, they provide a
clearer and bigger picture. In other words, architectural
decisions provide much richer input to the formal (or
less formal) methods that will be used to evaluate these
attributes.

• Extended architectural reusability. Reuse of architec-
tural artifacts, such as components and connectors, can
be more effectively performed when the architectural
decisions are explicitly documented in the architecture.
To reuse architectural artifacts, we need to know why
they were chosen, what their alternatives were, and what
benefits and liabilities they bring about. Such kind of
reusability prevents the architects from re-making past
mistakes or making new mistakes. Finally architectural
decisions per se, can and should be reused, probably after
slight modifications.

• Extended traceability between requirements and ar-
chitectural models. Architectural decisions realize re-
quirements (or stakeholders’ concerns) on the one hand,
and result in architectural models on the other hand.
Therefore, architectural decisions are the missing link be-
tween requirements and architectural models and provide
a two-way traceability between them [6]. The architect
and other stakeholders can thus reason which require-
ments are satisfied by a specific part of the system, and
vice-versa, which part of the system realizes specific
requirements.

We are currently trying to validate the use case model in
four industrial case studies to better understand the pragmatic
industrial needs and make the use case model as relevant and

effective as possible. After this validation, we plan to perform
a second iteration of validation interviews with the original
interviewees from the first iteration, as well as more stake-
holders with different roles, in order to fully cover the most
significant roles. Furthermore external architects will also be
asked to validate the use case model. In the meantime we have
already attempted to implement parts of the knowledge grid in
the form of tool support, which is used in the aforementioned
case study of the Astron Foundation.

ACKNOWLEDGEMENTS

This research has partially been sponsored by the Dutch
Joint Academic and Commercial Quality Research & Devel-
opment (Jacquard) program on Software Engineering Research
via contract 638.001.406 GRIFFIN: a GRId For inFormatIoN
about architectural knowledge.

REFERENCES

[1] J. Bosch, “Software architecture: The next step,” inSoftware Architec-
ture, First European Workshop (EWSA), ser. LNCS, vol. 3047. Springer,
May 2004, pp. 194–199.

[2] P. Kruchten, P. Lago, H. van Vliet, and T. Wolf, “Building up and
exploiting architectural knowledge,” inWICSA 5, November 2005.

[3] J. Tyree and A. Akerman, “Architecture decisions: Demystifying archite-
cure,” IEEE Software, vol. 22, no. 2, pp. 19–27, 2005.

[4] A. Tang, M. A. Babar, I. Gorton, and J. Han, “A survey of the use
and documentation of architecture design rationale,” inProceedings of
WICSA 5, November 2005.

[5] A. G. J. Jansen and J. Bosch, “Software architecture as a set of
architectural design decisions,” inProceedings of WICSA 5, November
2005, pp. 109–119.

[6] J. S. van der Ven, A. G. J. Jansen, J. A. G. Nijhuis, and J. Bosch,
“Design decisions: The bridge between rationale and architecture,” in
Rationale Management in Software Engineering, A. H. D. et al., Ed.
Springer-Verlag, march 2006, ch. 16, pp. 329–348.

[7] P. Kruchten, P. Lago, and H. van Vliet, “Building up and reasoning about
architectural knowledge,” inProceedings of the Second International
Conference on the Quality if Software Architectures (QoSA 2006), June
2006.

[8] H. Zhuge,The Knowledge Grid. World Scientific Publishing Company,
2004.

[9] Griffin project website, http://griffin.cs.vu.nl.
[10] R. Farenhorst, R. C. de Boer, R. Deckers, P. Lago, and H. van Vliet,

“What’s in a domain model for sharing architectural knowledge?” in
Proceedings of the 18th International Conference on Software Engi-
neering and Knowledge Engineering (SEKE2006), July 2006.

[11] A. Cockburn,Writing Effective Use Cases. Addison Wesley, 2001.
[12] The Unified Modeling Language (UML) website, http://www.uml.org/.
[13] Lofar project website, http://www.lofar.org/.
[14] J. H. Hayes, A. Dekhtyar, and S. K. Sundaram, “Improving after-the-fact

tracing and mapping: Supporting software quality predictions,”IEEE
Software, vol. 22, no. 6, pp. 30–37, November/December 2005.

[15] L. Bass, P. Clements, and R. Kazman,Software architecture in practice
2nd ed. Addison Wesley, 2003.

[16] J. Bosch, Design & Use of Software Architectures, Adopting and
evolving a product-line approach. ACM Press/Addison Wesley, 2000.

[17] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little,
R. Nord, and J. Stafford,Documenting Software Architectures, Views
and Beyond. Addison Wesley, 2002.

[18] C. Hofmeister, R. Nord, and D. Soni,Applied software architecture.
Addison Wesley, 2000.

[19] N. Medvidovic and R. N. Taylor, “A classification and comparison
framework for software architecture description languages,”IEEE Trans-
actions on Software Engineering, vol. 26, no. 1, pp. 70–93, 2000.

[20] A. van der Hoek, M. Mikic-Rakic, R. Roshandel, and N. Medvidovic,
“Taming architectural evolution,” inProceedings of the 8th European
software engineering conference. ACM Press, 2001, pp. 1–10.

[21] M. Shaw and D. Garlan,Software architecture: perspectives on an
emerging discipline. Prentice-Hall, Inc., 1996.

[22] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,A
system of patterns. John Wiley & Sons, Inc., 1996.

[23] I. G. Muhammad Ali Babar and R. Jeffery, “Toward a framework for
capturing and using architecture design knowledge,” University of New
South Wales, Australia ans National ICT Australia Ltd., Tech. Rep.
UNSW-CSE-TR-0513, june 2005.

[24] P. Lago and H. van Vliet, “Explicit assumptions enrich architectural
models,” inICSE ’05: Proceedings of the 27th international conference
on Software engineering. New York, NY, USA: ACM Press, 2005, pp.
206–214.

[25] J. E. Burge and D. C. Brown, “An integrated approach for software
design checking using design rationale,” in1st International Conference
on Design Computing and Cognition (DCC ’04), July 2004, pp. 557–
576.

[26] E. L. A. Baniassad, G. C. Murphy, and C. Schwanninger, “Design pattern
rationale graphs: Linking design to source,” inProceedings of the 25th
ICSE, May 2003, pp. 352–362.

[27] Z. Wang, K. Sherdil, and N. H. Madhavji, “ACCA: An architecture-
centric concern analysis method,” in5th Working IEEE/IFIP Conference
on Software Architecture (WICSA), November 2005.

[28] D. E. Perry and A. L. Wolf, “Foundations for the study of software
architecture,”ACM SIGSOFT Software Engineering Notes, vol. 17, no. 4,
pp. 40–52, 1992.

APPENDIX

GRIFFIN QUESTIONNAIRE

This appendix contains the questionnaire that was used
during the interviews with the stakeholders at the industrial
partners. The questionnaire was sent to most interviewees in
advance and used by the Griffin research team to see whether
all relevant subjects have been discussed during the interview.

Introduction of yourself

1) Can you describe your role and responsibilities within the
organization?

2) Can you give an estimate on what percentage of your time
is spent on activities related to architecture? Examples in-
clude capturing architectural knowledge, communicating
architectural knowledge to stakeholders, et cetera.

3) With what kind of stakeholders in the architecting process
do you interact most?

Architecture

1) For the sake of clarity: what is your definition of “(soft-
ware) architecture”? Does this definition differ from the
generally accepted definition within your organization?

2) Can you describe the software design process, and the
place the architecture takes in it?

3) Are architectures kept up-to-date during evolution? What
techniques are used in keeping the architectures up-to-
date?

4) For what stakeholders are architecture documents cre-
ated? What are (generally spoken) the most important
stakeholders?

5) Are tools, methods, templates, or architectural description
languages (ADLs) used in constructing an architecture?

6) Are you satisfied about the way these tools, methods, tem-
plates, or ADLs are being utilized during the architecture
construction process? Can you mention any improvement
points?

Architectural knowledge

1) What architectural decisions are documented, and how?
2) Can you quantify the impact of Architectural Knowledge

that is lost / not present / too implicit? Can you give
examples?

3) Could you provide a top-3 list of burdens in modelling
architectures? What are your ideas on this?

Your architectures of today and in the past

1) What are the most important quality characteristics of
your architecture (or architectures)?

2) What kind of solutions do you provide in your design?
Do you reuse certain solutions (e.g. architectural patterns)
in your architectures?

3) (If possible to mention commonalities): With what kinds
of design aspects do you deal explicitly in your archi-
tectures? Examples of design aspects include interfaces,
error handling, execution architecture, data consistency,
and robustness.

4) From what sources do you obtain information for these
design aspects?

5) Is there a topic on which you foresee a big change in the
use of architectures in the future?

A. Architecting in daily practice

1) How is the availability of architectural information
planned, managed, and reviewed?

2) What will be (in your opinion) a big change in the
architect’s job in the future?

3) Looking back on the last few years, what would you
reckon as a significant step forward in architecting sup-
port?

4) How would you prepare for this?
5) How is this change planned?

